Yield Delta's AI rebalancing system uses machine learning to automatically optimize liquidity positions, maximizing yields while minimizing risk on the SEI Network.
Our AI engine continuously analyzes market conditions, price movements, and liquidity dynamics to determine optimal rebalancing strategies. Unlike static positions, AI rebalancing adapts to changing market conditions in real-time.
The AI system continuously collects market data:
interface MarketData {
prices: {
current: number;
high24h: number;
low24h: number;
change24h: number;
};
volume: {
current: number;
average24h: number;
trend: 'increasing' | 'decreasing' | 'stable';
};
liquidity: {
tvl: number;
utilization: number;
depth: LiquidityDepth;
};
volatility: {
realized: number;
implied: number;
garch: number; // GARCH model prediction
};
}Multiple ML models work together to generate predictions:
class RebalancingPredictor:
def __init__(self):
self.price_model = load_model('price_prediction.onnx')
self.volatility_model = load_model('volatility_prediction.onnx')
self.yield_model = load_model('yield_optimization.onnx')
def predict_optimal_range(self, market_data: MarketData) -> OptimalRange:
# Price prediction (next 24 hours)
price_forecast = self.price_model.predict([
market_data.prices.current,
market_data.volume.current,
market_data.volatility.realized
])
# Volatility prediction
volatility_forecast = self.volatility_model.predict([
market_data.volatility.realized,
market_data.volume.trend,
market_data.prices.change24h
])
# Optimal range calculation
optimal_range = self.yield_model.predict([
price_forecast,
volatility_forecast,
market_data.liquidity.utilization
])
return OptimalRange(
lower_tick=int(optimal_range[0]),
upper_tick=int(optimal_range[1]),
confidence=optimal_range[2],
expected_apy=optimal_range[3]
)The AI evaluates whether rebalancing is profitable:
interface RebalancingDecision {
shouldRebalance: boolean;
confidence: number;
expectedImprovement: number;
riskLevel: 'low' | 'medium' | 'high';
proposal: {
newRange: {
lowerTick: number;
upperTick: number;
};
estimatedCost: {
gasUsed: number;
gasCostSEI: number;
slippage: number;
};
expectedBenefit: {
additionalAPY: number;
timeHorizon: number; // Hours to break even
};
};
}When rebalancing is determined to be profitable:
function executeAIRebalancing(
RebalanceParams calldata params,
bytes calldata signature
) external nonReentrant {
// Verify AI signature
require(verifyAISignature(params, signature), "Invalid AI signature");
// Check time constraints
require(
block.timestamp >= lastRebalance + rebalanceInterval,
"Too soon to rebalance"
);
// Risk checks
require(params.maxSlippage <= maxAllowedSlippage, "Slippage too high");
require(params.gasLimit <= maxGasLimit, "Gas limit exceeded");
// Execute rebalancing
_executeRebalance(params);
// Update state
lastRebalance = block.timestamp;
emit AIRebalanceExecuted(params.newLowerTick, params.newUpperTick);
}Objective: Maximize fee collection by maintaining optimal tick ranges
The AI continuously adjusts ranges based on market conditions:
interface RiskControls {
maxPositionSize: number; // Maximum position as % of total
maxDailyRebalances: number; // Limit rebalancing frequency
minProfitThreshold: number; // Minimum expected improvement
maxSlippage: number; // Maximum acceptable slippage
stopLoss: {
enabled: boolean;
threshold: number; // % loss to trigger stop
cooldown: number; // Time before re-entering
};
volatilityLimits: {
maxVolatility: number; // Pause if volatility exceeds
lookbackPeriod: number; // Hours to calculate volatility
};
}Automatic halts during extreme market conditions:
interface RebalancingMetrics {
execution: {
totalRebalances: number;
successRate: number;
averageGasCost: number;
averageSlippage: number;
};
performance: {
additionalYield: number; // Extra yield from rebalancing
sharpeImprovement: number; // Risk-adjusted improvement
maxDrawdownReduction: number;
};
accuracy: {
predictionAccuracy: number; // % of predictions within tolerance
rangeUtilization: number; // % of time price stays in range
falseSenalRate: number; // % of unnecessary rebalances
};
}Historical performance analysis shows consistent improvements:
Users can customize AI behavior:
interface AIConfiguration {
riskTolerance: 'conservative' | 'moderate' | 'aggressive';
rebalanceFrequency: 'low' | 'medium' | 'high';
gasOptimization: boolean;
thresholds: {
minImprovement: number; // Minimum % improvement required
maxSlippage: number; // Maximum acceptable slippage
maxGasCost: number; // Maximum gas cost in SEI
};
restrictions: {
maxDailyRebalances: number;
pauseDuringVolatility: boolean;
respectManualOverrides: boolean;
};
}Different AI strategies for different market conditions:
AI-powered rebalancing transforms static positions into dynamic, intelligent yield generators.