AI-Powered Rebalancing

Yield Delta's AI rebalancing system uses machine learning to automatically optimize liquidity positions, maximizing yields while minimizing risk on the SEI Network.

Overview

Our AI engine continuously analyzes market conditions, price movements, and liquidity dynamics to determine optimal rebalancing strategies. Unlike static positions, AI rebalancing adapts to changing market conditions in real-time.

Key Benefits

How AI Rebalancing Works

1. Data Collection

The AI system continuously collects market data:

typescript
interface MarketData { prices: { current: number; high24h: number; low24h: number; change24h: number; }; volume: { current: number; average24h: number; trend: 'increasing' | 'decreasing' | 'stable'; }; liquidity: { tvl: number; utilization: number; depth: LiquidityDepth; }; volatility: { realized: number; implied: number; garch: number; // GARCH model prediction }; }

2. Model Prediction

Multiple ML models work together to generate predictions:

typescript
class RebalancingPredictor: def __init__(self): self.price_model = load_model('price_prediction.onnx') self.volatility_model = load_model('volatility_prediction.onnx') self.yield_model = load_model('yield_optimization.onnx') def predict_optimal_range(self, market_data: MarketData) -> OptimalRange: # Price prediction (next 24 hours) price_forecast = self.price_model.predict([ market_data.prices.current, market_data.volume.current, market_data.volatility.realized ]) # Volatility prediction volatility_forecast = self.volatility_model.predict([ market_data.volatility.realized, market_data.volume.trend, market_data.prices.change24h ]) # Optimal range calculation optimal_range = self.yield_model.predict([ price_forecast, volatility_forecast, market_data.liquidity.utilization ]) return OptimalRange( lower_tick=int(optimal_range[0]), upper_tick=int(optimal_range[1]), confidence=optimal_range[2], expected_apy=optimal_range[3] )

3. Decision Making

The AI evaluates whether rebalancing is profitable:

typescript
interface RebalancingDecision { shouldRebalance: boolean; confidence: number; expectedImprovement: number; riskLevel: 'low' | 'medium' | 'high'; proposal: { newRange: { lowerTick: number; upperTick: number; }; estimatedCost: { gasUsed: number; gasCostSEI: number; slippage: number; }; expectedBenefit: { additionalAPY: number; timeHorizon: number; // Hours to break even }; }; }

4. Execution Strategy

When rebalancing is determined to be profitable:

solidity
function executeAIRebalancing( RebalanceParams calldata params, bytes calldata signature ) external nonReentrant { // Verify AI signature require(verifyAISignature(params, signature), "Invalid AI signature"); // Check time constraints require( block.timestamp >= lastRebalance + rebalanceInterval, "Too soon to rebalance" ); // Risk checks require(params.maxSlippage <= maxAllowedSlippage, "Slippage too high"); require(params.gasLimit <= maxGasLimit, "Gas limit exceeded"); // Execute rebalancing _executeRebalance(params); // Update state lastRebalance = block.timestamp; emit AIRebalanceExecuted(params.newLowerTick, params.newUpperTick); }

Rebalancing Strategies

Concentrated Liquidity Optimization

Objective: Maximize fee collection by maintaining optimal tick ranges

Dynamic Range Adjustment

The AI continuously adjusts ranges based on market conditions:

Risk Management

Automated Risk Controls

typescript
interface RiskControls { maxPositionSize: number; // Maximum position as % of total maxDailyRebalances: number; // Limit rebalancing frequency minProfitThreshold: number; // Minimum expected improvement maxSlippage: number; // Maximum acceptable slippage stopLoss: { enabled: boolean; threshold: number; // % loss to trigger stop cooldown: number; // Time before re-entering }; volatilityLimits: { maxVolatility: number; // Pause if volatility exceeds lookbackPeriod: number; // Hours to calculate volatility }; }

Circuit Breakers

Automatic halts during extreme market conditions:

Performance Metrics

Real-time Tracking

typescript
interface RebalancingMetrics { execution: { totalRebalances: number; successRate: number; averageGasCost: number; averageSlippage: number; }; performance: { additionalYield: number; // Extra yield from rebalancing sharpeImprovement: number; // Risk-adjusted improvement maxDrawdownReduction: number; }; accuracy: { predictionAccuracy: number; // % of predictions within tolerance rangeUtilization: number; // % of time price stays in range falseSenalRate: number; // % of unnecessary rebalances }; }

Backtesting Results

Historical performance analysis shows consistent improvements:

Static Range Strategy

  • APY: 12.4%
  • Max Drawdown: -8.7%
  • Sharpe Ratio: 1.23

AI-Powered Strategy

  • APY: 18.9% (+52% improvement)
  • Max Drawdown: -5.2% (-40% reduction)
  • Sharpe Ratio: 1.67 (+36% improvement)

Configuration

AI Settings

Users can customize AI behavior:

typescript
interface AIConfiguration { riskTolerance: 'conservative' | 'moderate' | 'aggressive'; rebalanceFrequency: 'low' | 'medium' | 'high'; gasOptimization: boolean; thresholds: { minImprovement: number; // Minimum % improvement required maxSlippage: number; // Maximum acceptable slippage maxGasCost: number; // Maximum gas cost in SEI }; restrictions: { maxDailyRebalances: number; pauseDuringVolatility: boolean; respectManualOverrides: boolean; }; }

Strategy Selection

Different AI strategies for different market conditions:


AI-powered rebalancing transforms static positions into dynamic, intelligent yield generators.