Yield Delta's AI rebalancing system uses machine learning to automatically optimize liquidity positions, maximizing yields while minimizing risk on the SEI Network.
Our AI engine continuously analyzes market conditions, price movements, and liquidity dynamics to determine optimal rebalancing strategies. Unlike static positions, AI rebalancing adapts to changing market conditions in real-time.
The AI system continuously collects market data:
typescriptinterface MarketData { prices: { current: number; high24h: number; low24h: number; change24h: number; }; volume: { current: number; average24h: number; trend: 'increasing' | 'decreasing' | 'stable'; }; liquidity: { tvl: number; utilization: number; depth: LiquidityDepth; }; volatility: { realized: number; implied: number; garch: number; // GARCH model prediction }; }
Multiple ML models work together to generate predictions:
typescriptclass RebalancingPredictor: def __init__(self): self.price_model = load_model('price_prediction.onnx') self.volatility_model = load_model('volatility_prediction.onnx') self.yield_model = load_model('yield_optimization.onnx') def predict_optimal_range(self, market_data: MarketData) -> OptimalRange: # Price prediction (next 24 hours) price_forecast = self.price_model.predict([ market_data.prices.current, market_data.volume.current, market_data.volatility.realized ]) # Volatility prediction volatility_forecast = self.volatility_model.predict([ market_data.volatility.realized, market_data.volume.trend, market_data.prices.change24h ]) # Optimal range calculation optimal_range = self.yield_model.predict([ price_forecast, volatility_forecast, market_data.liquidity.utilization ]) return OptimalRange( lower_tick=int(optimal_range[0]), upper_tick=int(optimal_range[1]), confidence=optimal_range[2], expected_apy=optimal_range[3] )
The AI evaluates whether rebalancing is profitable:
typescriptinterface RebalancingDecision { shouldRebalance: boolean; confidence: number; expectedImprovement: number; riskLevel: 'low' | 'medium' | 'high'; proposal: { newRange: { lowerTick: number; upperTick: number; }; estimatedCost: { gasUsed: number; gasCostSEI: number; slippage: number; }; expectedBenefit: { additionalAPY: number; timeHorizon: number; // Hours to break even }; }; }
When rebalancing is determined to be profitable:
solidityfunction executeAIRebalancing( RebalanceParams calldata params, bytes calldata signature ) external nonReentrant { // Verify AI signature require(verifyAISignature(params, signature), "Invalid AI signature"); // Check time constraints require( block.timestamp >= lastRebalance + rebalanceInterval, "Too soon to rebalance" ); // Risk checks require(params.maxSlippage <= maxAllowedSlippage, "Slippage too high"); require(params.gasLimit <= maxGasLimit, "Gas limit exceeded"); // Execute rebalancing _executeRebalance(params); // Update state lastRebalance = block.timestamp; emit AIRebalanceExecuted(params.newLowerTick, params.newUpperTick); }
Objective: Maximize fee collection by maintaining optimal tick ranges
The AI continuously adjusts ranges based on market conditions:
typescriptinterface RiskControls { maxPositionSize: number; // Maximum position as % of total maxDailyRebalances: number; // Limit rebalancing frequency minProfitThreshold: number; // Minimum expected improvement maxSlippage: number; // Maximum acceptable slippage stopLoss: { enabled: boolean; threshold: number; // % loss to trigger stop cooldown: number; // Time before re-entering }; volatilityLimits: { maxVolatility: number; // Pause if volatility exceeds lookbackPeriod: number; // Hours to calculate volatility }; }
Automatic halts during extreme market conditions:
typescriptinterface RebalancingMetrics { execution: { totalRebalances: number; successRate: number; averageGasCost: number; averageSlippage: number; }; performance: { additionalYield: number; // Extra yield from rebalancing sharpeImprovement: number; // Risk-adjusted improvement maxDrawdownReduction: number; }; accuracy: { predictionAccuracy: number; // % of predictions within tolerance rangeUtilization: number; // % of time price stays in range falseSenalRate: number; // % of unnecessary rebalances }; }
Historical performance analysis shows consistent improvements:
Users can customize AI behavior:
typescriptinterface AIConfiguration { riskTolerance: 'conservative' | 'moderate' | 'aggressive'; rebalanceFrequency: 'low' | 'medium' | 'high'; gasOptimization: boolean; thresholds: { minImprovement: number; // Minimum % improvement required maxSlippage: number; // Maximum acceptable slippage maxGasCost: number; // Maximum gas cost in SEI }; restrictions: { maxDailyRebalances: number; pauseDuringVolatility: boolean; respectManualOverrides: boolean; }; }
Different AI strategies for different market conditions:
AI-powered rebalancing transforms static positions into dynamic, intelligent yield generators.